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Abstract. For a simple connected graph G, the incidence energy IE(G) is defined as the sum of all singular
values of its incidence matrix. In this paper, we characterize the graphs with the maximum incidence
energies among all graphs with given chromatic number and given pendent vertex number, respectively.
We also characterize the graphs with the minimum incidence energy among all graphs with given clique
number. Especially, we characterize the tree with the minimum incidence energy among all trees with
given pendent vertex number.

1. Introduction

Let G = (V,E) be a simple connected graph with vertex set V = {v1, v2, . . . , vn} and edge set E =
{e1, e2, . . . , em}. The adjacency matrix A(G) = (ai j) of G is an n × n symmetric matrix of 0’s and l’s with ai j = 1
if and only if viv j ∈ E. The eigenvalues of A(G) are called the eigenvalues of G.

The notion of the energy of a graph was introduced by Gutman as the sum of the absolute values of its
eigenvalues, it is studied in chemistry and used to approximate the total-electron energy of a molecule [4].
The singular values of an n × m matrix M are the nonnegative square roots of the eigenvalues of MM∗ if
n ≤ m or M∗M if n ≥ m, where M∗ is the transpose conjugate of M. Nikiforov [13] extended the concept of
energy to all matrices M, defining the energy of a matrix M as the sum of the singular values of M. Clearly,
the energy of the matrix A(G) is just the energy of the graph G from the fact A(G)∗ = A(G).

Let edges of G be given an arbitrary orientation producing an oriented graph ~G , and let B(G) be the
vertex-edge incidence matrix of the oriented ~G, whose (v; e) entry is equal to +1 if the vertex v is the head of
the oriented edge e, −1 if v is the tail of e, and 0 otherwise. The oriented incidence energy of G, denoted by
OIE(G), is defined by Stevanović et al. in [15] as the energy of the matrix B(G). This invariant is also called
the Laplacian-like energy LEL(G) of a graph G in [9]. Various properties of OIE(G) or LEL(G) were found in
[10, 15–19].

Let X(G) be the (vertex- edge) incidence matrix of G with xi j = 1 if vi is incident to e j, and xi j = 0
otherwise. In analogy to the oriented incidence energy, the incidence energy of G is defined as the energy
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of the matrix X(G) in [5, 7]. That is, suppose that σ1, σ2, . . . , σn are the singular values of X(G), the incidence
energy of a graph G is defined as

IE(G) =

n∑
i=1

σi. (1)

The matrix Q(G) = D(G) + A(G) is called the signless Laplacian matrix of G (see [1, 2]), where A(G)
and D(G) are the adjacency matrix and the diagonal matrix which entries are the degrees of vertices of G,
respectively. Let q1, q2, . . . , qn be the eigenvalues of Q(G). Note that X(G)XT(G) = D(G) + A(G) = Q(G), thus
the incidence energy of a graph G is also defined as [5]

IE(G) =

n∑
i=1

√
qi(G). (2)

For a bipartite graph G, IE(G) = OIE(G), since the signless Laplacian Q(G) and the Laplacian matrix
L(G) = D(G) − A(G) = B(G)B(G)T have common eigenvalues.

Tan and Hou [20] determined the graphs with minimal and maximal incidence energy among the trees
on n vertices. Zhang and Li [22] determined the graphs with respectively minimal and maximal incidence
energy respectively among unicyclic graphs and bicyclic graphs on n vertices. Some properties of the
incidence energy of graphs were obtained in [5, 7], and several upper and lower bounds for the incidence
energy of graphs were derived in [6, 23]. Mirzakhah et al. [11] gave many graph transformations on
the coefficients of the signless Laplacian characteristic polynomial. In fact, those are also suit-able for the
incidence energy of graphs. In [14], a sharp upper bound for the incidence energy of the graphs G on n
vertices with vertex connectivity less than or equal to k was obtained.

A tree is said to be starlike if it has exactly one vertex of degree greater than 2. Let Sn,k denote the starlike
tree on n vertices with k pendent paths of almost equal length and Sa

n,k−1 be the graph obtained by joining a
pendent vertex of path Pa−1 to the center of Sn−a+1,k−1. Let Kn1,n2,...,ns

n,s be the graph obtained from a complete
graph Ks by respectively attaching ni pendent vertices to vi for i = 1, 2, . . . , s, where V(Ks) = {v1, v2, . . . , vs}

and n1 +n2 +. . .+ns = n−s. Let Kn,s = Kn1,n2,...,ns
n,s with n1 = n−s, n2 = n3 = · · · = ns = 0 and Ks

n,s = Kn1,n2,...,ns
n,s with

max
1≤i, j≤s

|ni − n j| ≤ 1. Recall that the Turán graph Tn,r, is a complete multipartite graph formed by partitioning

a set of n vertices into r subsets, with sizes as equal as possible, and connecting two vertices by an edge
whenever they belong to different subsets. In this paper, we will prove that the Turán graph Tn,χ is the
unique graph with maximum incidence energy in the set of all graphs on n vertices with chromatic number
χ, Kn−k

n,n−k is the graph with maximum incidence energy in the set of all graphs on n vertices with k pendent
vertices, respectively. We also will prove that Kn,ω is the unique graph with minimum incidence energy in
the set of all graphs on n vertices with clique number ω. Finally, we will prove that Sn,k is the unique tree
with minimum incidence energy in the set of all trees on n vertices with exactly k pendent vertices.

2. Preliminaries

Let S(G) be the subdivision graph of the graph G, which obtained by inserting an additional vertex into
each edge of G. Then S(G) is a bipartite graph. Suppose that the characteristic polynomial of S(G) is [1]

PS(G)(x) = det(xI − A(S(G))) =

b
n+m

2 c∑
i=0

(−1)ib2i(S(G))xn+m−2i,

where b2i(S(G)) ≥ 0, b0(S(G)) = 1, b2(S(G)) = n + m. Especially, if G is a tree, then b2k(G) = m(G, k), where
m(G, k) denotes the number of k-matchings of G. Let the Q-polynomial of G be

QG(x) = det(xI −Q(G)) =

n∑
i=0

(−1)ipi(G)xn−i.
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It was proved in [1] that

PS(G)(x) = xm−nQG(x2). (3)

Hence b2i(S(G)) = pi(G) for 0 ≤ i ≤ n, and b2i(S(G)) = 0 for n < i ≤ b n+m
2 c.

Let f (x) =
∑n

i=0(−1)i fixn−i and 1(x) =
∑n

i=0(−1)i1ixn−i be two polynomial of degree n. We call f (x) majorises
1(x), denoted by f (x) � 1(x) if fi ≥ 1i ≥ 0 for 0 ≤ i ≤ n; Furthermore, f (x) � 1(x) if f (x) . 1(x), and f (x) � 0 if
all fi ≥ 0 and fk > 0 for some k.

Given two graphs G1,G2 on n vertices, it was proved in [22] that

pi(G1) ≤ pi(G2) for i = 1, 2, . . . ,n ⇒ IE(G1) ≤ IE(G2) (4)

Moreover, if there exists some k such that pk(G1) < pk(G2), then IE(G1) < IE(G2).

For a polynomial h(x) =
n∑

i=0
hixn−i. Let Cxk (h(x)) be the coefficient of xk in h(x), i.e., Cxk (h(x)) = hn−k for

0 ≤ k ≤ n.

Lemma 2.1. Let G1,G2 be two graphs on n vertices. If QG1 (x) � QG2 (x), then IE(G1) ≥ IE(G2); Furthermore, if
QG1 (x) � QG2 (x), then IE(G1) > IE(G2).

Proof. Since Q(G) is a semi-definite matrix, QG(x) is a polynomial which has a positive leading coefficient
and the signs of its coefficients are alternating. Combining the definition of ” � ” and Inq.4, the result
follows.

Lemma 2.2. Let

A(x) =

s∑
i=0

(−1)iaixs−i,B(x) =

t∑
i=0

(−1)ibixt−i

and

C(x) =

s∑
i=0

(−1)icixs−i,D(x) =

t∑
i=0

(−1)idixt−i.

If A(x) � C(x) � 0 and B(x) � D(x) � 0, then A(x)B(x) � C(x)D(x). Moreover, if A(x) � C(x) or B(x) � D(x), then
A(x)B(x) � C(x)D(x).

Proof. Since ai ≥ ci ≥ 0 for 0 ≤ i ≤ s and bi ≥ di ≥ 0 for 0 ≤ i ≤ t,

(−1)kCxn−k (A(x)B(x)) =
∑

i

aibk−i ≥
∑

i

cidk−i = (−1)kCxn−k (C(x)D(x)),

and then the first result follows. Suppose that A(x) � C(x). From the first result we have

A(x)B(x) � C(x)B(x) � C(x)D(x).

Thus the second result follows.

A spanning subgraph of G whose components are trees or unicyclic graphs is called a TU-subgraph
of G. Suppose that a TU-subgraph H of G contains c(H) unicyclic graphs and s trees T1,T2, . . . ,Ts. Then
the weight W(H) of H is defined as W(H) = 4c(H)Πs

i=1(1 + |E(Ti)|). Clearly, the isolated vertices in H do not
contribute to W(H). D. Cveković etc [2] proved that

pi(G) =
∑
Hi

W(Hi),

where the summation runs over all TU-subgraphs Hi of G with i edges. Thus the following Lemma is
obvious.

Lemma 2.3. [11] Let G be a simple connected graph and e ∈ E(G), then pi(G) ≥ pi(G − e) with equality if and only
if i = 0. That is, QG(x) � QG−e(x), and then IE(G) > IE(G − e).
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3. The Incidence Energy of Connected Graphs with Given Chromatic Number

Let Tn,χ denote the Turán graph. The chromatic number of a graph G, denoted by χ(G), is the minimum
number of colors assigned to the vertices of G such that adjacent vertices have different colors.

Theorem 3.1. Let Gn,χ be the set of all simple graphs on n vertices with chromatic number χ and G be an arbitrary
graph in Gn,χ. Then

IE(G) ≤ IE(Tn,χ)

with equality if and only if G � Tn,χ.

Proof. Let G be a graph which has the maximal incidence energy in Gn,χ. The result is trivial for χ = 1.
Now we suppose that χ ≥ 2. By the definition of chromatic number, we have that each color class of G is
an independent set. Let V1, V2,. . . , Vχ be the χ-color classes of G where each Vi is an independent set with
|Vi
| = ni. By Lemma 2.3, G � Kn1,n2,...,nχ . Let n1 = max1≤i≤χ ni.
Suppose that G � Tn,χ. Then there exists i such that n1 − ni ≥ 2. Without loss of generality, we suppose

that n1 − n2 ≥ 2. Then let G1 � Kn1−1,n2+1,...,nχ . Obviously, G1 ∈ Gn,χ. By Theorem 1 of [21], we know that

QKn1 ,n2 ,...,nχ
(x) =

χ∏
i=1

(x − (n − ni))ni−1

 χ∏
i=1

(x − (n − 2ni)) −
χ∑

i=1

ni

χ∏
j=1 j,i

(x − (n − 2n j))

 .
Let

fn1,n2 (x) =

χ∏
i=1

(x − (n − ni))ni−1

and

1n1,n2 (x) =

χ∏
i=1

(x − (n − 2ni)) −
χ∑

i=1

ni

χ∏
j=1 j,i

(x − (n − 2n j)).

Then QG(x) = fn1,n2 (x)1n1,n2 (x) and QG1 (x) = fn1−1,n2+1(x)1n1−1,n2+1(x).
Obviously, x − (n − n2 − 1) � x − (n − n1) and x − (n − n1 + 1) � x − (n − n1). By Lemma 2.2, we have

(x − (n − n2 − 1))n1−n2−1 (x − (n − n1 + 1)) � (x − (n − n1))n1−n2 .

Similarly, by the fact

(x − (n − n1 + 1)) (x − (n − n2 − 1)) � (x − (n − n1)) (x − (n − n2))

and Lemma 2.2, we have that

[(x − (n − n1 + 1)) (x − (n − n2 − 1))]n2−1
� [(x − (n − n1)) (x − (n − n2))]n2−1.

Thus fn1−1,n2+1(x) � fn1,n2 (x).
Now considering the difference of 1n1−1,n2+1(x) and 1n1,n2 (x), we have

1n1−1,n2+1(x) − 1n1,n2 (x)

= [(x − (n − 2(n1 − 1))) (x − (n − 2(n2 + 1))) − (x − (n − 2n1))) (x − (n − 2n2))] ·
χ∏

i=3

(x − (n − 2ni))

−[(n1 − 1)(x − (n − 2(n2 + 1))) + (n2 + 1)(x − (n − 2(n1 − 1)))
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−n1(x − (n − 2n2) − n2(x − (n − 2n1))] ·
χ∏

i=3

(x − (n − 2ni))

− [(x − (n − 2(n1 − 1))) (x − (n − 2(n2 + 1))) − (x − (n − 2n1))) (x − (n − 2n2))] ·
χ∑

i=3

ni

χ∏
j=3 j,i

(x − (n − 2n j))

= 4(n1 − n2 − 1)
χ∏

i=3

(x − (n − 2ni)) − 4(n1 − n2 − 1)
χ∏

i=3

(x − (n − 2ni)) − 4(n1 − n2 − 1)
χ∑

i=3

ni

χ∏
j=3 j,i

(x − (n − 2n j))

= 0 · xχ − 0 · xχ−1 + 0 · xχ−2
− 4(n1 − n2 − 1)

χ∑
i=3

ni

χ∏
j=3 j,i

(x − (n − 2n j)).

If χ = 2, then 1n1−1,n2+1(x) = 1n1,n2 (x). Suppose now that χ ≥ 3. Since n − 2n j > 0 for i = 3, 4, . . . , χ,
ni

∏χ
j=3 j,i(x− (n− 2n j)) is a polynomial of degree n− 3 which has a positive leading coefficient and the signs

of its coefficients are alternating. Then
χ∑

i=3
ni

∏χ
j=3 j,i(x − (n − 2n j)) is a polynomial of degree n − 3 which has

a positive leading coefficient, and the signs of its coefficients are alternating. Hence for 0 ≤ k ≤ χ − 3,

(−1)kCxχ−3−k

 χ∑
i=3

ni

χ∏
j=3 j,i

(x − (n − 2n j))

 > 0.

Note that n1 − n2 − 1 > 0. Then for 0 ≤ k ≤ χ − 3

(−1)kCxχ−3−k

−4(n1 − n2 − 1)
χ∑

i=3

ni

χ∏
j=3 j,i

(x − (n − 2n j))

 < 0,

which implying that (−1)kCxχ−k
(
1n1−1,n2+1(x) − 1n1,n2 (x)

)
= 0 for k = 0, 1, 2, and

(−1)kCxχ−k
(
1n1−1,n2+1(x) − 1n1,n2 (x)

)
> 0

for 3 ≤ k ≤ χ. Thus 1n1−1,n2+1(x) � 1n1,n2 (x) for χ ≥ 3. By Lemma 2.2, QG1 (x) � QG(x) and then IE(G1) > IE(G),
a contradiction. Thus G � Tn,χ.

4. The Incidence Energy of Connected Graphs with Given Clique Number

By Sachs Theorem [1] we have that

Lemma 4.1. [8, 22] Let e = uv be a cut edge of a bipartite graph G, then

b2k(G) = b2k(G − e) + b2k−2(G − u − v).

Lemma 4.2. If n1 ≥ n2 + 2, then

pi(Kn1,n2,...,ns
n,s ) ≤ pi(Kn1−1,n2+1,...,ns

n,s ),

and the inequality is strict for some i.

Proof. It suffices to prove that b2i(S(Kn1,n2,...,ns
n,s )) ≤ b2i(S(Kn1−1,n2+1,...,ns

n,s )) for 0 ≤ i ≤ n, since b2i(S(G)) = pi(G) for
0 ≤ i ≤ n. By Lemma 4.1, we have

b2i(S(Kn1,n2,...,ns
n,s )) = b2i(S(Kn1−1,n2,...,ns

n,s ) ∪ P2) + b2i−2((S(Kn1−1,n2,...,ns
n,s ) − v1) ∪ P1)

b2i(S(Kn1−1,n2+1,...,ns
n,s )) = b2i(S(Kn1−1,n2,...,ns

n,s ) ∪ P2) + b2i−2((S(Kn1−1,n2,...,ns
n,s ) − v2) ∪ P1)
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It is easy to see that there exist cut edges e1, e2, . . . , en1−n2−1 such that

S(Kn1−1,n2,...,ns
n,s ) − v2 − e1 − e2 − . . . − en1−n2−1 � S(Kn1−1,n2,...,ns

n,s ) − v1.

By Lemma 4.1 we have that b2i−2((S(Kn1−1,n2,...,ns
n,s ) − v1) ∪ P1) ≤ b2i−2((S(Kn1−1,n2,...,ns

n,s ) −v2) ∪ P1) and it is strict
for i = 2. Thus the result follows.

Lemma 4.3. [11, 22] Let G be a simple graph, T be a tree with t edges, and u ∈ V(G), v ∈ V(T). Let G1 be the graph
obtained from G and T by identifying the vertices u of G and v of T, G2 be the graph obtained from G and the star St+1
by identifying the vertex u of G and the unique central vertex of St+1. Then

pi(G1) ≥ pi(G2),

with equality for 0 ≤ i ≤ |V(G1)| if and only if T � St+1 and v is its central vertex.

Theorem 4.1. Let G be a simple connected graph on n vertices with clique number ω. Then

IE(G) ≥ IE(Kn,ω)

with equality if and only G � Kn,ω.

Proof. By Lemma 2.3 and Lemma 4.3, there exist n1,n2, . . . ,nω such that pi(G) ≥ pi(Kn1,...,nω
n,ω ) for 0 ≤ i ≤ n, the

equalities hold if and only if G � Kn1,...,nω
n,ω . By Lemma 4.2 it follows that pi(Kn1,...,nω

n,ω ) ≥ pi(Kn,ω) for 0 ≤ i ≤ n,
and the equalities hold if and only if G � Kn,ω. Thus, IE(G) ≥ IE(Kn,ω) with equality if and only G � Kn,ω.

5. The Incidence Energy of Connected Graphs with Given the Number of Pendent Vertex

Theorem 5.1. Let G be a simple connected graph on n vertices with exactly k pendent vertices. Then

IE(G) ≤ IE(Kn−k
n,n−k)

with equality if and only if G � Kn−k
n,n−k.

Proof. By Lemma 2.3 and Lemma 4.2, the result follows.

Lemma 5.1. (i) [3, p. 53] Let n = 4k or 4k + 2 . Then for 0 ≤ i ≤ b n
2 c,

m(P2 ∪ Pn−2, i) ≥ m(P4 ∪ Pn−4, i) ≥ . . . ≥ m(P2k ∪ Pn−2k, i).

(ii) The above last inequality is strict for i = 3 for n ≥ 6.

Proof. We only need to prove the second result. Note that for a + b = n/2,

m(P2a ∪ P2b, 3) =

(
2a − 3

3

)
+

(
2b − 3

3

)
+

(
2a − 2

2

)
(2b − 1) +

(
2b − 2

2

)
(2a − 1)

=
1
6

n3
−

5
2

n2 +
40
3

n − 26 − abn,

the (ii) is immediate for n ≥ 6.

Lemma 5.2. Let G(k, l) be a connected graph obtained from a non-trivial connected graph G by attaching two pendent
path of length l and k at the common vertex w of G. Let k ≥ l + 1, then

(i)[11] pi(G(k, l)) ≥ pi(G(k − 1, l + 1)) for 0 ≤ i ≤ |V(G(k, l))|.
(ii) If G is a tree with at least an edge, then the above inequality is strict for i = 4.
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Proof. We will prove (ii). Since G is a tree, S(G(k, l)) is also a tree and

pi(G(k, l)) = b2i(S(G(k, l))) = m(S(G(k, l)), i).

Let Ai(k, l) be the set of i-matching in S(G(k, l)), Bi(k, l) be the set of i-matching in S(G(k, l)), each of which
contains an edge of S(G) adjacency to w, and Ci(k, l) = Ai(k, l) \ Bi(k, l). Then

m(S(G(k, l)), i) = |Bi(k, l)| + |Ci(k, l)|
m(S(G(k − 1, l + 1)), i) = |Bi(k − 1, l + 1)| + |Ci(k − 1, l + 1)|

Clearly, |Ci(k, l)| = m(S(G) − w ∪ P2k+2l+1, i) = |Ci(k − 1, l + 1)|. Let NS(G)(w) = {w1,w2, . . . ,ws}, then

|Bi(k, l)| =

s∑
j=1

i∑
t=1

m(S(G) − w − w j, t − 1)m(P2k ∪ P2l, i − t)

≥

s∑
j=1

i∑
t=1

m(S(G) − w − w j, t − 1)m(P2k−2 ∪ P2l+2, i − t)

= |Bi(k − 1, l + 1)|,

and the inequality is strict for i = 4 from Lemma 5.1. Thus pi(G(k, l)) ≥ pi(G(k − 1, l + 1)) for 0 ≤ i ≤ n, and
the inequality is strict for i = 4.

Lemma 5.3. Let T be a tree on n vertices with exactly k pendent vertices. Let u be the vertex of degree not less than
3 in T such that there is a pendent path of length a − 1 pendent to u. Then

IE(T) ≥ IE(Sa
n,k−1)

with equality if and only if T � Sa
n,k−1.

Proof. Since S(T) and S(Sa
n,k−1) are trees on 2n − 1 vertices, we only need to prove that for 1 ≤ i ≤ n,

m(S(T), i) ≥ m(S(Sa
n,k−1), i) with all equalities hold if and only if T � Sa

n,k−1. The result follows from the
Appendix Table of [12] for n ≤ 10. Suppose now that n ≥ 11 and the result is true for the values less than n.

Let NS(T)(u) = {u1,u2, . . . ,us} and {v1, v2, . . . , vk} be k pendent vertices in T, where NG(u) denotes the
neighbor set of the vertex u in G. Suppose that e1 = uu1 be the edge of pendent path of length 2a − 2 with
pendent vertex v1. Let n − a = b(k − 1) + r, where 0 ≤ r ≤ k − 2. By Lemma 4.1 we have

m(S(T), i) = m(S(T) − e1, i) + m(S(T) − u − u1, i − 1)
m(S(Sa

n,k−1), i) = m(S(Sn−a+1,k−1) ∪ P2a−2, i)
+m(P2a−3 ∪ rP2d n−a

k−1 e
∪ (k − r − 1)P2b n−a

k−1 c
, i − 1)

Note that S(T)− e1 � S(T′)∪P2a−2, where T′ is a tree on n− a + 1 vertices with k− 1 pendent vertices. If k = 3,
then S(T′) is a path of 2n − 2a + 1 vertices and S(T) − e1 � S(T′) ∪ P2a−2 � S(Sn−a+1,2) ∪ P2a−2. Suppose that
k ≥ 4 and w is a vertex of degree greater than 2 in T′ such that there is a pendent path of length b pendent
to w. By induction hypothesis and Lemma 5.2, we have that for 0 ≤ i ≤ n,

m(S(T) − e1, i) = m(S(T′) ∪ P2a−2, i)
≥ m(S(Sb

n−a+1,k−2) ∪ P2a−2, i)
≥ m(S(Sn−a+1,k−1) ∪ P2a−2, i).

In the following we will prove the inequality

m(S(T) − u − u1, i − 1) ≥ m(P2a−3 ∪ rP2d n−a+1
k−1 e
∪ (k − r − 1)P2b n−a+1

k−1 c
, i − 1)

for 1 ≤ i ≤ n. Let S(T)−u−u1 �
⋃s

i=1 Gi, where G1 � P2a−3 and Gi is the component of S(T)−u−u1 containing
ui for 2 ≤ i ≤ s. Suppose that V(G2) ∩ {v1, v2, . . . , vk} = {v2, . . . , vt}. Let P2 be the unique path joining u2 and
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v2. Let e3 be the edge which is the closest to vertex v3 and incident to a vertex of degree greater than 2 in
G2. And in process, for 4 ≤ i ≤ t, let ei be the edge which is the closest to vertex vi and incident to a vertex

of degree greater than 2 in G2 −
i−1⋃
j=3

ei. Then G2 − e3 − . . . − et �
⋃t

i=2 Pi, where Pi is a path containing vi for

3 ≤ i ≤ t in G2. It is easy to see that Pi contains even vertex number. Repeating this procession to G3, . . . ,Gs,

we finally obtain a path decomposition of S(T) − u − u1. Therefore P2a−3

k⋃
j=2

P j is a spanning subgraph of

S(T) − u − u1. Since the vertex number of all P j (2 ≤ j ≤ k) are even, by Lemma 5.1 we have

m(S(T) − u − u1, i − 1) ≥ m(P2a−3

k⋃
j=2

P j, i − 1)

≥ m(P2a−3 ∪ rP2d n−a
k−1 e
∪ (k − r − 1)P2b n−a

k−1 c
, i − 1)

the first equality for i = 2 if and only if S(T) is a starlike tree with unique vertex u of degree greater than 3,

and the second equality for i = 3 if and only if
k⋃

j=2
P j � rP2d n−a+1

k−1 e
∪ (k− r−1)P2b n−a+1

k−1 c
. These imply all equalities

hold if and only if T � Sa
n,k−1.

Theorem 5.2. Let T be a tree on n vertices with k pendent vertices. Then

IE(T) ≥ IE(Sn,k)

with equality if and only if G � Sn,k.

Proof. By Lemma 5.2 and Lemma 5.3, the result follows.
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[18] D. Stevanović, A. Ilić, On the Laplacian coefficients of unicyclic graphs, Lin. Algebra Appl., 430 (2009) 2290–2300.
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